Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

close
close
  • Why Netskope chevron

    Changing the way networking and security work together.

  • Our Customers chevron

    Netskope serves more than 3,400 customers worldwide including more than 30 of the Fortune 100

  • Our Partners chevron

    We partner with security leaders to help you secure your journey to the cloud.

A Leader in SSE. Now a Leader in Single-Vendor SASE.

Learn why Netskope debuted as a leader in the 2024 Gartner® Magic Quadrant™️ for Single-Vendor Secure Access Service Edge

Get the report
Customer Visionary Spotlights

Read how innovative customers are successfully navigating today’s changing networking & security landscape through the Netskope One platform.

Get the eBook
Customer Visionary Spotlights
Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.

Learn about Netskope Partners
Group of diverse young professionals smiling
Your Network of Tomorrow

Plan your path toward a faster, more secure, and more resilient network designed for the applications and users that you support.

Get the white paper
Your Network of Tomorrow
Netskope Cloud Exchange

The Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.

Learn about Cloud Exchange
Aerial view of a city
  • Security Service Edge chevron

    Protect against advanced and cloud-enabled threats and safeguard data across all vectors.

  • SD-WAN chevron

    Confidently provide secure, high-performance access to every remote user, device, site, and cloud.

  • Secure Access Service Edge chevron

    Netskope One SASE provides a cloud-native, fully-converged and single-vendor SASE solution.

The platform of the future is Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Go to Products Overview
Netskope video
Next Gen SASE Branch is hybrid — connected, secured, and automated

Netskope Next Gen SASE Branch converges Context-Aware SASE Fabric, Zero-Trust Hybrid Security, and SkopeAI-powered Cloud Orchestrator into a unified cloud offering, ushering in a fully modernized branch experience for the borderless enterprise.

Learn about Next Gen SASE Branch
People at the open space office
SASE Architecture For Dummies

Get your complimentary copy of the only guide to SASE design you’ll ever need.

Get the eBook
SASE Architecture For Dummies eBook
Make the move to market-leading cloud security services with minimal latency and high reliability.

Learn about NewEdge
Lighted highway through mountainside switchbacks
Safely enable the use of generative AI applications with application access control, real-time user coaching, and best-in-class data protection.

Learn how we secure generative AI use
Safely Enable ChatGPT and Generative AI
Zero trust solutions for SSE and SASE deployments

Learn about Zero Trust
Boat driving through open sea
Netskope achieves FedRAMP High Authorization

Choose Netskope GovCloud to accelerate your agency’s transformation.

Learn about Netskope GovCloud
Netskope GovCloud
  • Resources chevron

    Learn more about how Netskope can help you secure your journey to the cloud.

  • Blog chevron

    Learn how Netskope enables security and networking transformation through secure access service edge (SASE)

  • Events and Workshops chevron

    Stay ahead of the latest security trends and connect with your peers.

  • Security Defined chevron

    Everything you need to know in our cybersecurity encyclopedia.

Security Visionaries Podcast

2025 Predictions
In this episode of Security Visionaries, we're joined by Kiersten Todt, President at Wondros and former Chief of Staff for the Cybersecurity and Infrastructure Security Agency (CISA) to discuss predictions for 2025 and beyond.

Play the podcast Browse all podcasts
2025 Predictions
Latest Blogs

Read how Netskope can enable the Zero Trust and SASE journey through secure access service edge (SASE) capabilities.

Read the blog
Sunrise and cloudy sky
SASE Week 2024 On-Demand

Learn how to navigate the latest advancements in SASE and zero trust and explore how these frameworks are adapting to address cybersecurity and infrastructure challenges

Explore sessions
SASE Week 2024
What is SASE?

Learn about the future convergence of networking and security tools in today’s cloud dominant business model.

Learn about SASE
  • Company chevron

    We help you stay ahead of cloud, data, and network security challenges.

  • Careers chevron

    Join Netskope's 3,000+ amazing team members building the industry’s leading cloud-native security platform.

  • Customer Solutions chevron

    We are here for you and with you every step of the way, ensuring your success with Netskope.

  • Training and Accreditations chevron

    Netskope training will help you become a cloud security expert.

Supporting sustainability through data security

Netskope is proud to participate in Vision 2045: an initiative aimed to raise awareness on private industry’s role in sustainability.

Find out more
Supporting Sustainability Through Data Security
Help shape the future of cloud security

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Join the team
Careers at Netskope
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

Go to Customer Solutions
Netskope Professional Services
Secure your digital transformation journey and make the most of your cloud, web, and private applications with Netskope training.

Learn about Training and Certifications
Group of young professionals working

New Python NodeStealer Goes Beyond Facebook Credentials, Now Stealing All Browser Cookies and Login Credentials

Sep 14 2023

Summary

Netskope Threat Labs is tracking a campaign that uses malicious Python scripts to steal Facebook users’ credentials and browser data. This campaign targets Facebook business accounts with bogus Facebook messages with a malicious file attached. The attacks are reaching victims mainly in Southern Europe and North America across different segments, led by the manufacturing services and technology sectors.

In January 2023, Meta identified a JavaScript-based malware dubbed NodeStealer, which aims to steal Facebook cookies and login credentials.

The present campaign appears to be a new variant of the Python-based NodeStealer that still aims to compromise Facebook business accounts. However, unlike previously reported NodeStealer versions, this one also pilfers all available credentials and cookies, not just those of Facebook. 

Let us explore how this new NodeStealer variant works.

NodeStealer distributed via Facebook messages.

The new NodeStealer variant we detected was hosted on the Facebook CDN and was sent to victims as an attachment in Facebook messages. Images of defective products were used as bait to convince owners or admins of Facebook business pages to download the malware payload. Unlike previous NodeStealer campaigns, this one uses a batch file instead of an executable as the initial payload.

NodeStealer sent via Facebook

We observed some identical batch files in multiple languages, indicating that the attacker customized the attack for each demographic.

Identical batch scripts named in different language

Once the file is downloaded, users have to run the batch file. The batch file uses a different character encoding,and opening it with a text editor by default will show incoherent characters. This is an attempt to obfuscate the script and hide its functions. Opening the file with a different encoding scheme will make the script comprehensible.

Malicious batch file readable when opened with UTF-8 character encoding

Once the user runs the batch file, it will initially open a Chrome browser and will land the victim on a benign page. The Chrome process will not be used later on, which is why we suspect that it was only done to convince the user that the file is benign.

However, in the background, Powershell is downloading several files from a malicious newly-registered domain (vuagame[.]store) using Invoke-WebRequest. It will initially download two zip files (Document.zip and 4HAI.zip), which will be stored in the C:\Users\Public folder. Document.zip contains a Python interpreter and its required DLLs and libraries, while 4HAI.zip contains the malware payloads.

Persistence through Startup Folder

Another difference with this NodeStealer, compared to the previously disclosed version, is the method for persistence. The “4HAI.zip” zip file contains another malicious batch file that is copied to the startup folder. The batch file runs Powershell to download and execute a malicious Python script named “project.py”. Just like the previous batch file, changing the character encoding is required to make the script legible.

After copying the batch file to the startup folder, another Python script named rmv.py is downloaded and executed to delete artifacts left behind.

Stolen credentials and browser cookies

The malicious python script in the startup folder converts an embedded hexadecimal encoded data into its binary representation. It was compressed several times over to likely evade detection. After several decompressions, the “exec” function is used to run the script.

Once it runs, one of the things the script checks is if there’s a Google Chrome process running, which it will terminate if there is. As mentioned earlier, Chrome is opened to access a benign website to put the user at ease. Ensuring that Chrome is not running is required at this stage to access the browser data.

Script that checks and terminates Chrome

Afterwards, the Python-based NodeStealer will collect the user’s IP address and country code using IPinfo. They will be used as a folder name where all collected data will be saved.

The malicious script collects several Google Chrome browser files, namely Login Data, Cookies and Local State. All copied files are then placed in a temp folder with the user’s IP address and country code as the folder name. Similar to previously disclosed NodeStealer, this one also targets several browsers, specifically Microsoft Edge, Brave, Opera, Cốc Cốc, Opera, and Firefox. The folder where the files are copied is deleted later on to remove evidence of the exfiltrated files.

Collection of Google Chrome Cookies, Login Data and Local State

After collecting browser files, NodeStealer first collects the encryption key found on the “Local State” file. This will be used later on to decrypt encrypted passwords. It then collects the username, password, and the URL from which they logged on, from the “Login Data” file. All data collected is then saved on a text file named “Password.txt” located on the temp file created earlier. 

NodeStealer also reads Cookie files and collects several pieces of data, such as domain, cookie name and values, and other important data. Unlike the previously reported NodeStealer, this variant will collect browser cookies regardless of whether it is from Facebook or not. However, we can see that it still looks for Facebook data since data collected from it is saved on a different text file. Stealing users’ cookies can lead to more targeted attacks. Cookies may store login credentials or active session data that can bypass the need to log in or type in the multi-factor authentication code, which can help attackers take over the victim’s account or make fraudulent transactions.

Facebook cookie data being saved separately to a different text file

Exfiltration via Telegram

Just like the previously reported Python-based NodeStealer, all harvested files are collected using Telegram.

Once the data is exfiltrated, the script performs a cleanup of all files and folders it created. And since the malicious batch file is on the startup folder, credentials and other browser data will continually be harvested.

Files collected will be deleted after exfiltration

Conclusion

This post described, what we believe, is a new variant of the Python-based NodeStealer. Compared to earlier variants, the new NodeStealer variant uses batch files to download and run Python scripts, and steal credentials and cookies from multiple browsers and for multiple websites. This campaign might be a doorway to a more targeted attack later on since they have already gathered useful information. Attackers who have stolen Facebook cookies and credentials can use them to take over the account, make fraudulent transactions leveraging the legitimate business page. Users can protect their data from being stolen by being vigilant on what they download over the internet. Do not download and open files that you receive via social media, even if they appear to come from someone you know.

Recommendations

The malicious files described in the post are distributed via social media applications. Being mindful of URL links or attachments received even from known sources can help prevent users from being victims of this campaign.

Netskope Threat Labs recommends that organizations review their security policies to ensure that they are adequately protected against these and similar phishing pages and scams. Other recommendations include:

  • Inspect all HTTP and HTTPS traffic, including all web and cloud traffic, to prevent users from visiting malicious websites. Netskope customers can configure their Netskope NG-SWG with a URL filtering policy to block known phishing and scam sites, and a threat protection policy to inspect all web content to identify unknown phishing and scam sites using a combination of signatures, threat intelligence, and machine learning.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Trojan.GenericKD.68681756
    • Script.Trojan.Malgent
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

Below are the IOCs related to the web pages analyzed in this blog post.

URLs:

  • hxxps://cdn.fbsbx.com/v/t59.2708-21/367434252_826968952391881_4583268091682907143_n.rar/image-product-103c3e2d4se43234ed22c19d3f47611e2e.rar
  • hxxps://cdn.fbsbx.com/v/t59.2708-21/366790602_1527838844638580_5700504415987597148_n.rar/Bild-Produkt-1615448759625_19599_4e232787b5053ac7f631b0c701d2159c_1.rar
  • hxxps://cdn.fbsbx.com/v/t59.2708-21/366774494_655373353219514_2097719301301827427_n.rar/photo-product-103c3e2d22c19d3f47611e2e.rar
  • hxxps://cdn.fbsbx.com/v/t59.2708-21/366541252_307708121731913_2867761615862616633_n.rar/image-produit-103c3gdfe2d22c19d3f47611e2e.rar
  • hxxps://cdn.fbsbx.com/v/t59.2708-21/366736184_272143855551717_1974995500254017245_n.rar/imagem-produto-103c3e2e43234ed22c19d3f47611e2e.rar
  • hxxps://vuagame[.]store/rmv
  • hxxps://vuagame[.]store/document.zip
  • hxxps://vuagame[.]store/4HAI.zip
  • hxxps://vuagame[.]store/4HA

MD5:

  • 173b17e195b0a80611c22f333c3d2ec2
  • 2dc191275434b6afe6c6117ad76051ed
  • 13f94cda395bfdd2c87a024ee497e576
  • 10f53e5d2eacf8912ca5d0516a8dc89f
  • 64f4b6f2b2dfdd2e0c8c47e726f75e9a
  • bfcce5cd48cc23071052120338df1226
author image
Jan Michael Alcantara
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.

Stay informed!

Subscribe for the latest from the Netskope Blog